(1)Hao Junming; Jia Peiqian; Wu Tonghua; Li Wangping; chen Jie; Yang Xiaohui; Wu Xiaodong; Hu Guojie; Cui kai; Zhang Mingli ; Numerical analysis of the impacts of rainfall on permafrost related slope stability on the Qinghai-Tibet Plateau, Journal of Hydrology: Regional Studies,2023, 47: 101439 (2)Li, Wangping; Lin, Qingrun;Hao, Junming; Wu, Xiaodong; Zhou, Zhaoye; Lou, Peiqing; Liu, Yadong. Landscape Ecological Risk Assessment and Analysis of Influencing Factors in Selenga River Basin[J/OL]. Remote Sensing, 2023, 15(17): 4262. (3)Hao J, Lin Q, Wu T, Chen J, Li W, Wu X, et al. Spatial–Temporal and Driving Factors of Land Use/Cover Change in Mongolia from 1990 to 2021. Remote Sens. 2023. 29; 15(7): 1813. (4)Hao, Junming; Wu, Tonghua*; Wu, Xiaodong; Hu, Guojie; Zou, Defu; Zhu, Xiaofan; Zhao, Lin; Li, Ren; Xie, Changwei; Ni, Jie; Yang, Cheng; Li, Xiangfei; Ma, Wensi; Investigation of a Small Landslide in the Qinghai- Tibet Plateau by InSAR and Absolute Deformation Model, Remote sensing. 2019.11(8): 1–20 (5)郝君明,吴通华*,李韧,吴晓东,谢昌卫,朱小凡,李旺平,邹德富.胡国杰.杜二计.刘广岳.乔永平,青藏高原东北部青海玉树泥流滑坡特征和成因分析,冰川冻土, 2020. 42(2): 447–56 (6)Chen, Jie; Wu, Tonghua; Zou, Defu; Liu, Lin; Wu, Xiaodong; Gong, Wenyu; Zhu, Xiaofan; Li, Ren; Hao,Junming; Hu, Guojie; Pang, Qiangqiang; Zhang, Jing; Yang, Sizhong ; Magnitudes and patterns of large-scale permafrost ground deformation revealed by Sentinel-1 InSAR on the central Qinghai-Tibet Plateau, Remote Sensing of Environment, 2022, 268: 112778 (7)Ni, Jie; Wu, Tonghua*; Zhu, Xiaofan; Hu, Guojie; Zou, Defu; Wu, Xiaodong; Li, Ren; Xie, Changwei; Qiao, Yongping; Pang, Qiangqiang;Hao, Junming; Yang, Cheng; Simulation of the Present and Future Projection of Permafrost on the Qinghai-Tibet Plateau with Statistical and Machine Learning Models, Journal of Geophysical Research:, 2021, 33(0): 2–31 (8)Hu, Yan; Liu, Lin*; Wang, Xiaowen; Zhao, Lin; Wu, Tonghua; Cai, Jialun; Zhu, Xiaofan;Hao, Junming; Quantification of Permafrost Creep Provides Kinematic Evidence for Classifying a Puzzling Periglacial Landform, Earth Surface Processes and Landforms, 2020. 46(2): 465–77 (9)Ni, Jie; Wu, Tonghua*; Zhu, Xiaofan; Wu, Xiaodong; Pang, Qiangqiang; Zou, Defu; Chen, Jie; Li, Ren; Hu, Guojie; Du, Yizhen;Hao, Junming; Li, Xiangfei; Qiao, Yongping; Risk Assessment of Potential Thaw Settlement Hazard in the Permafrost Regions of Qinghai-Tibet Plateau, Science of the Total Environment, 2021.776: 145855 (10)Wang D, Wu T, Wu X, et al., 2021. Soil organic carbon distribution for 0–3 m soils at 1 km2 scale of the frozen ground in the Third Pole Regions[J]. Earth System Science Data Discussions: 1-30. (11)Ma W, Wu T, Wu X, et al., 2021. Warming could shift steppes to carbon sinks and meadows to carbon sources in permafrost regions: Evidence from the improved IBIS model[J]. CATENA, 200: 105168. (12)黄立鑫,郝君明,李旺平, et al., 2021.基于RBF神经网络-信息量耦合模型的滑坡易发性评价[J].中国地质灾害与防治学报, 32(6): 116-126. (13)Hu G, Zhao L, Zhu X, et al., 2020. Review of algorithms and parameterizations to determine unfrozen water content in frozen soil[J]. Geoderma, 368: 114277. (14)Hu Y, Liu L, Wang X, et al., 2020. Quantification of permafrost creep provides kinematic evidence for classifying a puzzling periglacial landform[J]. Earth Surface Processes and Landforms, 46(2): 465-477. (15)Zhu X, Wu T, Hu G, et al., 2020. Long-distance atmospheric moisture dominates water budget in permafrost regions of the Central Qinghai-Tibet plateau[J]. Hydrological Processes, 34(22): 4280-4294. (16)Hu G, Zhao L, Li R, et al., 2019. Simulation of land surface heat fluxes in permafrost regions on the Qinghai-Tibetan Plateau using CMIP5 models[J]. Atmospheric Research, 220: 155-168. (17)Hu G, Zhao L, Wu X, et al., 2019. Evaluation of reanalysis air temperature products in permafrost regions on the Qinghai-Tibetan Plateau[J]. Theoretical and Applied Climatology, 138(3-4): 1457-1470. (18)Yang C, Wu T, Wang J, et al., 2019. Estimating Surface Soil Heat Flux in Permafrost Regions Using Remote Sensing-Based Models on the Northern Qinghai-Tibetan Plateau under Clear-Sky Conditions[J]. Remote Sensing, 11(4): 416. (19)Zhu X, Wu T, Zhao L, et al., 2019. Exploring the contribution of precipitation to water within the active layer during the thawing period in the permafrost regions of central Qinghai-Tibet Plateau by stable isotopic tracing[J]. Science of the Total Environment, 661: 630-644. (20)Hu G jie, Tian L ming, Zhao L, et al., 2018. Soil infiltration processes of different underlying surfaces in the permafrost region on the Tibetan Plateau[J]. Hydrological Sciences Journal, 63(11): 1733-1744. (21)Wang W, Wu T, Zhao L, et al., 2018. Hydrochemical characteristics of ground ice in permafrost regions of the Qinghai-Tibet Plateau[J]. Science of The Total Environment, 626: 366-376. (22)Wang W, Wu T, Zhao L, et al., 2018. Exploring the ground ice recharge near permafrost table on the central Qinghai-Tibet Plateau using chemical and isotopic data[J]. Journal of Hydrology, 560: 220-229. (23)Hu G, Zhao L, Wu X, et al., 2017. A mathematical investigation of the air-ground temperature relationship in permafrost regions on the Tibetan Plateau[J]. Geoderma, 306: 244-251. (24)Qin Y, Wu T, Zhao L, et al., 2017. Numerical Modeling of the Active Layer Thickness and Permafrost Thermal State Across Qinghai-Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 122(21): 11,604-11,620. (25)Zhu X, Wu T, Li R, et al., 2017. Impacts of Summer Extreme Precipitation Events on the Hydrothermal Dynamics of the Active Layer in the Tanggula Permafrost Region on the Qinghai-Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 122(21): 11,549-11,567. |